Nonlinear waves in disordered chains: probing the limits of chaos and spreading.
نویسندگان
چکیده
We probe the limits of nonlinear wave spreading in disordered chains which are known to localize linear waves. We particularly extend recent studies on the regimes of strong and weak chaos during subdiffusive spreading of wave packets [Europhys. Lett. 91, 30001 (2010)] and consider strong disorder, which favors Anderson localization. We probe the limit of infinite disorder strength and study Fröhlich-Spencer-Wayne models. We find that the assumption of chaotic wave packet dynamics and its impact on spreading is in accord with all studied cases. Spreading appears to be asymptotic, without any observable slowing down. We also consider chains with spatially inhomogeneous nonlinearity, which give further support to our findings and conclusions.
منابع مشابه
Delocalization of wave packets in disordered nonlinear chains.
We consider the spatiotemporal evolution of a wave packet in disordered nonlinear Schrödinger and anharmonic oscillator chains. In the absence of nonlinearity all eigenstates are spatially localized with an upper bound on the localization length (Anderson localization). Nonlinear terms in the equations of motion destroy the Anderson localization due to nonintegrability and deterministic chaos. ...
متن کاملNonequilibrium chaos of disordered nonlinear waves.
Do nonlinear waves destroy Anderson localization? Computational and experimental studies yield subdiffusive nonequilibrium wave packet spreading. Chaotic dynamics and phase decoherence assumptions are used for explaining the data. We perform a quantitative analysis of the nonequilibrium chaos assumption and compute the time dependence of main chaos indicators--Lyapunov exponents and deviation v...
متن کاملNonlinear Multiuser Receiver for Optimized Chaos-Based DS-CDMA Systems
Chaos based communications have drawn increasing attention over the past years. Chaotic signals are derived from non-linear dynamic systems. They are aperiodic, broadband and deterministic signals that appear random in the time domain. Because of these properties, chaotic signals have been proposed to generate spreading sequences for wide-band secure communication recently. Like conventional DS...
متن کاملComplex statistics and diffusion in nonlinear disordered particle chains.
We investigate dynamically and statistically diffusive motion in a Klein-Gordon particle chain in the presence of disorder. In particular, we examine a low energy (subdiffusive) and a higher energy (self-trapping) case and verify that subdiffusive spreading is always observed. We then carry out a statistical analysis of the motion, in both cases, in the sense of the Central Limit Theorem and pr...
متن کاملStrong and Weak Chaos in Weakly Nonintegrable Many-Body Hamiltonian Systems
We study properties of chaos in generic one-dimensional nonlinear Hamiltonian lattices comprised of weakly coupled nonlinear oscillators by numerical simulations of continuous-time systems and symplectic maps. For small coupling, the measure of chaos is found to be proportional to the coupling strength and lattice length, with the typical maximal Lyapunov exponent being proportional to the squa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 84 1 Pt 2 شماره
صفحات -
تاریخ انتشار 2011